Iris Recognition using Color Models with Artificial Neural Network
نویسندگان
چکیده
Biometrics plays a vital role for an extensive array of highly secure identification and personal verification systems. Iris Recognition is the recognition of an individual based on iris features. It is regarded as the most promising biometric identification system available. In this paper, the iris recognition is applied on UBIRIS database. Image is segmented using circular Hough transform, then converted into a fixed sized rectangular block using Daugman’s Rubber sheet model. Iris features are extracted using CMYK color model and a feature vector is created using 2D Walsh Hadamard transform, finally these are classified based on Artificial Neural Network(ANN) using MLP. Based on the database size ROC(Receiver Operating Characteristic) curve is plotted using true positive rate and false positive rate in order to analyze for what size efficiency may be good.
منابع مشابه
Face Detection with methods based on color by using Artificial Neural Network
The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...
متن کاملCurl Size and Pelt Color Determination of Zandi Lambs Using Image Processing and Artificial Neural Network
In this study, a method based on using image processing and artificial neural network is introduced to determine pelt color and curl size of newborn lambs in Zandi sheep. The data was collected from 300 newborn lambs reared in the Zandi sheep breeding centre of Khojir, Tehran. Primarily, curl size and pelt color of new born lambs was recorded by experienced appraisers, and at the same time, sev...
متن کاملThe efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator
1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas. Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...
متن کاملPattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature
Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...
متن کاملIntegration of Color Features and Artificial Neural Networks for In-field Recognition of Saffron Flower
ABSTRACT-Manual harvesting of saffron as a laborious and exhausting job; it not only raises production costs, but also reduces the quality due to contaminations. Saffron quality could be enhanced if automated harvesting is substituted. As the main step towards designing a saffron harvester robot, an appropriate algorithm was developed in this study based on image processing techniques to recogn...
متن کامل